Activation of the cyclic adenosine monophosphate (cAMP) pathway induces the glial differentiation of glioblastoma (GBM) cells, but the fate of differentiated cells remains poorly understood. Transcriptome analyses have revealed significant changes in the cell cycle- and senescence-related pathways in differentiated GBM cells induced by dibutyryl cAMP (dbcAMP). Further investigations showed that reactive oxygen species (ROS) derived from enhanced mitochondrial function are involved in senescence induction and proliferation inhibition. Moreover, we found that IL-6 from dbcAMP- or temozolomide (TMZ)-induced senescent cells facilitates the glycolytic phenotype of GBM cells and that inhibiting the IL-6-related pathway hinders the proglycolytic effect of either agent. In patient-derived GBM xenograft models, a specific antibody targeting the IL-6 receptor tocilizumab (TCZ) significantly prolongs the survival time of TMZ-treated mice. Taken together, these results suggest that both the differentiation-inducing agent dbcAMP and the chemotherapy drug TMZ are able to drive GBM cells to senescence, and the latter releases IL-6 to potentiate glycolysis, suggesting that IL-6 is a target for adjuvant chemotherapy in GBM treatment.
Keywords: Glioblastoma; IL-6; glycolysis; senescence.
AJCR Copyright © 2021.