Gelatin Methacryloyl-Riboflavin (GelMA-RF) Hydrogels for Bone Regeneration

Int J Mol Sci. 2021 Feb 6;22(4):1635. doi: 10.3390/ijms22041635.

Abstract

Gelatin methacryloyl (GelMA) is a versatile biomaterial that has been used in various biomedical fields. UV light is commonly used to photocrosslink such materials; however, its use has raised several biosafety concerns. We investigated the mechanical and biological properties of a visible-wavelength (VW)-light-crosslinked gelatin-based hydrogel to evaluate its viability as a scaffold for bone regeneration in bone-destructive disease treatment. Irgacure2959 or riboflavin was added as a photoinitiator to create GelMA solutions. GelMA solutions were poured into a mold and exposed to either UV or VW light. KUSA-A1 cell-laden GelMA hydrogels were crosslinked and then cultured. Mechanical characterization revealed that the stiffness range of GelMA-RF hydrogel was suitable for osteoblast differentiation. KUSA-A1 cells encapsulated in GelMA hydrogels photopolymerized with VW light displayed significantly higher cell viability than cells encapsulated in hydrogels photopolymerized with UV light. We also show that the expression of osteogenesis-related genes at a late stage of osteoblast differentiation in osteoblasts encapsulated in GelMA-RF hydrogel was markedly increased under osteoblast differentiation-inducing conditions. The GelMA-RF hydrogel served as an excellent scaffold for the encapsulation of osteoblasts. GelMA-RF hydrogel-encapsulated osteoblasts have the potential not only to help regenerate bone mass but also to treat complex bone defects associated with bone-destructive diseases such as periodontitis.

Keywords: GelMA; hydrogel; osteoblast; photocrosslinking; riboflavin; tissue engineering; visible wavelength.

MeSH terms

  • Animals
  • Biocompatible Materials / pharmacology
  • Bone Regeneration / drug effects*
  • Cell Differentiation / drug effects
  • Cell Line
  • Cell Survival / drug effects
  • Curing Lights, Dental
  • Gelatin / chemistry
  • Gelatin / pharmacology*
  • Hydrogels / pharmacology
  • Light
  • Methacrylates / pharmacology*
  • Mice
  • Osteogenesis / physiology*
  • Periodontitis / therapy
  • Photoinitiators, Dental / pharmacology
  • Propane / analogs & derivatives*
  • Propane / pharmacology
  • Riboflavin / pharmacology
  • Tissue Engineering / methods*
  • Tissue Scaffolds / chemistry

Substances

  • 2-hydroxy-1-(4-(hydroxyethoxy)phenyl)-2-methyl-1-propanone
  • Biocompatible Materials
  • Hydrogels
  • Methacrylates
  • Photoinitiators, Dental
  • gelatin methacryloyl
  • Gelatin
  • Propane
  • Riboflavin