Brevinin-1BYa is an amphibian skin-derived peptide that exhibits promising anti-microbial activity against gram-positive and -negative bacteria. However, the anti-tumor activity of Brevinin-1BYa remains unclear, and, more importantly, its therapeutic application is limited owing to its poor protease and reduction stability. In this study, a series of novel Brevinin-1BYa derivatives, including O-linked N-acetyl-glucosamine glyclopeptides and disulfide bond mimetics, were designed and synthesized. Additionally, their anti-tumor activity against human prostate cancer cell line C4-2B, human NSCLC cell line A549 (adenocarcinoma), and human hepatoma cells line HuH-7 was investigated. Among these, the thioether bridge substituted peptidomimetic Brevinin-1BYa-3 displayed improved reduction stability, more stable secondary structure, greater protease stability, and increased anti-tumor activity compared with the original peptide, rendering it a promising leading compound for drug development, particularly for applications against malignant tumors.
Keywords: Anti-tumor activity; Brevinin-1BYa; Disulfide bond mimetics; Glyclopeptides.
Copyright © 2021 Elsevier Ltd. All rights reserved.