Background: Familial hypercholesterolemia (FH) is an inherited disorder mainly caused by mutations in the LDL receptor (LDL-R) and characterized by elevation of low-density lipoprotein cholesterol (LDL-C) levels and premature cardiovascular disease.
Objective: In this study, we evaluated the clinical phenotype of the p.Asp47Asn, described as an uncertain pathogenic variant, and its effect on the structure of LDL-R and ligand interactions with apolipoproteins.
Methods: 27 children and adolescents with suspected FH diagnosis were recruited from a pediatric endocrinology outpatient clinic. Blood samples were collected after 12 h fasting for lipid profile analysis. DNA sequencing was performed for six FH-related genes by Ion Torrent PGM platform and copy number variation by MLPA. For index cases, a familial cascade screening was done restricted to the same mutation found in the index case. In silico analysis were developed to evaluate the binding capacity of LDL-R to apolipoproteins B100 and E.
Results: Lipid profile in children and adolescents demonstrated higher LDL-C levels in p.Asp47Asn carriers compared to the wild type genotype. In silico analysis predicted a reduction in the binding capacity of the ligand-binding modules LA1-2 of p.Asp47Asn LDL-R for ApoB100 and ApoE, which was not produced by local structural changes or folding defects but as a consequence of a decreased apparent affinity for both apolipoproteins.
Conclusion: The clinical phenotype and the structural effects of p.Asp47Asn LDL-R mutation suggest that this variant associates to FH.
Keywords: Clinical phenotype; Familial hypercholesterolemia; Genetic diagnosis; In silico prediction; p.Asp47Asn LDL receptor variant.
Copyright © 2021. Published by Elsevier Inc.