While most individuals with access to alcohol drink it recreationally, some vulnerable individuals eventually lose control over their intake and progressively develop compulsive alcohol drinking and decreased interest in alternative sources of reinforcement, two key features of addiction. The neural and molecular mechanisms underlying this vulnerability to switch from controlled to compulsive alcohol intake have not been fully elucidated. It has been shown that rats having reduced levels of expression of the gamma-aminobutyric acid (GABA) transporter, GAT-3, in the amygdala tend to persist in seeking and drinking alcohol even when adulterated with quinine, suggesting that pharmacological interventions aimed at restoring GABA homeostasis in these individuals may provide a targeted treatment to limit compulsive alcohol drinking. Here, we tested the hypothesis that the GABAB receptor agonist baclofen, which decreases GABA release, specifically reduces compulsive alcohol drinking in vulnerable individuals. In a large cohort of Sprague-Dawley rats allowed to drink alcohol under an intermittent two-bottle choice procedure, a cluster of individuals was identified that persisted in drinking alcohol despite adulteration with quinine or when an alternative ingestive reinforcer, saccharin, was available. In these rats, which were characterized by decreased GAT-3 mRNA levels in the central amygdala, acute baclofen administration (1.5 mg/kg, intraperitoneal) resulted in a decrease in compulsive drinking. These results indicate that low GAT-3 mRNA levels in the central amygdala may represent an endophenotype of vulnerability to develop a compulsive drinking of alcohol that is shown here to be mitigated by baclofen.
Keywords: GABA transporter GAT-3; alcohol; baclofen; central amygdala; compulsive alcohol drinking.
© 2021 The Authors. Addiction Biology published by John Wiley & Sons Ltd on behalf of Society for the Study of Addiction.