Telocytes, which possess distinct body shapes and long telopodes, are allocated in the vascular wall. As a fundamental cell type, telocytes construct a three-dimensional network to form a support structure for the artery. This study aims to characterize the morphology and ultrastructure of telocytes in atherosclerotic arteries. ApoE gene-deficient mice were selected as the atherosclerosis animal model and fed a high-fat diet for at least 12 weeks, and immunofluorescence assays and transmission electron microscopy techniques were used to observe changes in telocytes in atherosclerotic arteries. By immunofluorescence staining, CD34, CD117 and PDGFR-α were positive compared with negative CD28/vimentin in telocytes in the atherosclerotic carotid artery, and they were distributed in the tunica intima and tunica adventitia. Under transmission electron microscopy, the bodies of telocytes became larger, while telopodes became shorter compared with their normal condition, and a mass of lipidosomes was present during the progression of atherosclerosis. These results demonstrate that immunofluorescence with TEM is the critical method for identifying TCs and that steatosis of TCs is a reason for atherosclerotic artery dysfunction.
Keywords: ApoE-/-mice; Atherosclerosis; Electron microscopy; Telocyte; Transmission; Ultrastructure.
Copyright © 2021 Elsevier GmbH. All rights reserved.