Purpose: In this study, we compared hyperpolarized 3He and 129Xe images from patients with cystic fibrosis using two commonly applied magnetic resonance sequences, standard gradient echo (GRE) and balanced steady-state free precession (TrueFISP) to quantify regional similarities and differences in signal distribution and defect analysis.
Materials and methods: Ten patients (7M/3F) with cystic fibrosis underwent hyperpolarized gas MR imaging with both 3He and 129Xe. Six had MRI with both GRE, and TrueFISP sequences and four patients had only GRE sequence but not TrueFISP. Ventilation defect percentages (VDPs) were calculated as lung voxels with <60% of the whole-lung hyperpolarized gas signal mean and was measured in all datasets. The voxel signal distributions of both 129Xe and 3He gases were visualized and compared using violin plots. VDPs of hyperpolarized 3 He and 129 Xe were compared in Bland-Altman plots; Pearson correlation coefficients were used to evaluate the relationships between inter-gas and inter-scan to assess the reproducibility.
Results: A significant correlation was demonstrated between 129Xe VDP and 3He VDP for both GRE and TrueFISP sequences (ρ = 0.78, p<0.0004). The correlation between the GRE and TrueFISP VDP for 3He was ρ = 0.98 and was ρ = 0.91 for 129Xe. Overall, 129Xe (27.2±9.4) VDP was higher than 3He (24.3±6.9) VDP on average on cystic fibrosis patients.
Conclusion: In patients with cystic fibrosis, the selection of hyperpolarized 129Xe or 3He gas is most likely inconsequential when it comes to measure the overall lung function by VDP although 129Xe may be more sensitive to starker lung defects, particularly when using a TrueFISP sequence.
Keywords: Cystic fibrosis; Hyperpolarized MRI; Lung defects; MRI scan; Ventilation defect percentage.
Copyright © 2021 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.