Background: Familial hypercholesterolemia (FH) is the most common cardiovascular genetic disorder and, if left untreated, is associated with increased risk of premature atherosclerotic cardiovascular disease, the leading cause of preventable death in the United States. Although FH is common, fatal, and treatable, it is underdiagnosed and undertreated due to a lack of systematic methods to identify individuals with FH and limited uptake of cascade testing.
Methods and results: This mixed-method, multi-stage study will optimize, test, and implement innovative approaches for both FH identification and cascade testing in 3 aims. To improve identification of individuals with FH, in Aim 1, we will compare and refine automated phenotype-based and genomic approaches to identify individuals likely to have FH. To improve cascade testing uptake for at-risk individuals, in Aim 2, we will use a patient-centered design thinking process to optimize and develop novel, active family communication methods. Using a prospective, observational pragmatic trial, we will assess uptake and effectiveness of each family communication method on cascade testing. Guided by an implementation science framework, in Aim 3, we will develop a comprehensive guide to identify individuals with FH. Using the Conceptual Model for Implementation Research, we will evaluate implementation outcomes including feasibility, acceptability, and perceived sustainability as well as health outcomes related to the optimized methods and tools developed in Aims 1 and 2.
Conclusions: Data generated from this study will address barriers and gaps in care related to underdiagnosis of FH by developing and optimizing tools to improve FH identification and cascade testing.
Keywords: cardiovascular disease; familial hypercholesterolemia; genetic testing; implementation science; machine learning; phenotype.