Background: Age-associated changes alter calcium-activated potassium channel (BKCa ) expression of colon. Sphingolipids (SLs) are important cell membrane structural components; altered composition of SLs may affect BKCa expression. This study investigated the mechanism by which sphingosine-1-phosphate (S1P) contributes to age-associated contractile dysfunction.
Methods: Fifty male Sprague Dawley rats of different ages were randomly assigned to five age-groups, namely 3, 6, 12, 18, and 24 months. BKCa expression, S1P levels, and phosphorylated myosin light chain (p-MLC) levels were tested in colonic tissues. In the absence and presence of S1P treatment, BKCa expression, p-MLC levels, and intracellular calcium mobilization were tested in vitro. BKCa small interfering RNA (siRNA) was used to investigate whether p-MLC expression and calcium mobilization were affected by BKCa in colonic smooth muscle cells (SMCs). The expressions of phosphorylated protein kinase B, c-Jun N-terminal kinases (JNKs), extracellular-regulated protein kinases, nuclear factor kappa-B (NF-κB), and protein kinase Cζ (PKCζ ) were examined to investigate the correlation between S1P and BKCa .
Key results: Sphingosine-1-phosphate levels and sphingosine-1-phosphate receptor 2 (S1PR2) and BKCa expressions were upregulated and p-MLC expression was downregulated in the colonic tissues, age dependently. In the cultured SMCs, S1P treatment increased BKCa expression and reduced calcium concentration and p-MLC was observed. BKCa siRNA increased calcium concentration, and p-MLC levels significantly compared with control. We also showed that S1P upregulated BKCa through PKCζ , JNK, and NF-κB pathways.
Conclusions and inferences: In conclusion, S1P and S1PR2 participate in age-associated contractile dysfunction via BKCa upregulation through PKCζ , JNK, and NF-κB pathways.
Keywords: BKCa; Jun N-terminal kinases; S1PR2; contractile dysfunction; nuclear factor kappa-B pathway; protein kinase Cζ; sphingosine-1-phosphate.
© 2021 John Wiley & Sons Ltd.