Genistein (GS) exhibits various biological activities, but its clinical application is limited because of the low bioavailability. In this study, a GS-adenine pharmaceutical complex was prepared through solvent evaporation to improve the bioavailability of GS, and a molecular model of a two-component supramolecular pharmacological transport mechanism was established. The structure of GS-adenine was characterized, in addition, interaction patterns between GS and adenine were investigated using density functional theory. The results showed that the solubility of GS-adenine was five times higher than that of GS, and the cumulative release rate of GS-adenine was 86 %. The results of fluorescence spectroscopy and molecular dynamic simulations showed that GS-adenine bound to the Sudlow's site I of HSA mainly through hydrophobic interactions. This study provides a useful reference for synthesizing pharmaceutical complexes to improve solubility and for exploring the mechanism of multiple pharmaceutical components in vivo.
Keywords: fluorescence; genistein-adenine; molecular docking; pharmaceutical complexes; pharmaceutical transportation.
© 2021 Wiley-VHCA AG, Zurich, Switzerland.