The freeze casting process has been widely used for fabricating aerogels due to its versatile and environmentally friendly nature. This process offers a variety of tools to tailor the entire micropore morphology of the final product in a monolithic fashion through manipulation of the freezing kinetics and precursor suspension chemistry. However, aerogels with nonmonolithic micropore morphologies, having pores of various sizes located in certain regions of the aerogels, are highly desired by certain applications such as controlled drug-delivery, bone tissue engineering, extracellular simulation, selective liquid sorption, immobilized catalysts, and separators. Furthermore, aerogels composed of micropores with predesigned size, shape, and location can open up a new paradigm in aerogel design and lead to new applications. In this study, a general manufacturing approach is developed to control the size, shape, and location of the pores on the aerogel surface by applying a precise control on the local thermal conductivity of the substrate used in a unidirectional freeze casting process. With our method, we created patterned low and high thermal conductivity regions on the substrate by depositing patterned photoresist polymer features. The photoresist polymer has a much lower thermal conductivity, which resulted in lower cooling/freezing rates compared to the silicon substrate. Patterned thermal conductivity created a designed temperature profile yielding to local regions with faster and slower freezing rates. Essentially, we fabricated aerogels whose micropore morphology on their surface was a replica of the patterned substrates in terms of size and location of the micropores. Using the same substrates, we further showed the possibility of 3D printed aerogels with precisely controlled, surface micropore morphologies. To the best of our knowledge, this is the first study that reports aerogels having micropore morphologies (e.g., size, shape, and location) that are precisely controlled through locally controlled thermal conductivity of the substrates.
Keywords: 3D printing; aerogel; controlled local thermal conductivity; freeze casting; micropore; microstructure manipulation.