The effect of various mechanical and chemical surface conditioning on the bonding of orthodontic brackets to all ceramic materials

J Dent Sci. 2021 Jan;16(1):370-374. doi: 10.1016/j.jds.2020.02.003. Epub 2020 Mar 16.

Abstract

Background/purpose: Increasing the bond strength between the orthodontic brackets and all-ceramic materials is one of the challenges facing orthodontists. The purpose of this study is to assess the shear bond strength (SBS) of metal brackets to two types of all ceramic materials using various surface mechanical and chemical conditioning methods.

Materials and methods: Sixty ceramic blocks were prepared using two types of all ceramic materials (IPS e.max and VITA Suprinity® PC) and treated with 3 surface treatments; surface etching with 9.6% hydrofluoric acid (HFA) for 2 mins; surface roughening with Sof-Lex finishing discs; and surface roughening with Sof-Lex finishing discs and etching with HFA. Metal brackets were attached to the surface of the ceramic blocks using light cure orthodontic adhesive. Samples were subjected to 2000 thermo-cycles (5-50 °C) and the SBS was assessed using Instron machine. The adhesive remnant index (ARI) was evaluated under light microscope. Descriptive and group comparison were calculated using Two-way ANOVA, Post-hoc Tukey's and Chi-square tests and significance level set at (P < 0.05).Results: surface roughening of both ceramic materials with Sof-Lex discs and HFA resulted in a significant increase in SBS compared to other experimental groups (P < 0.05). However, VITA Suprinity ceramic prepared with Sof-Lex discs only showed the lowest SBS. The distribution of the ARI scores was significantly different between the groups (P < 0.05).

Conclusion: Surface preparation of all ceramic materials with Sof-Lex discs and hydrofluoric acid combination produces the highest SBS to metallic orthodontic brackets.

Keywords: Ceramics; Orthodontic brackets; Shear strength; Zirconia.