Sarcopenia is the loss of skeletal muscle mass and function with advancing age. It involves both complex genetic and modifiable risk factors, such as lack of exercise, malnutrition and reduced neurological drive. Cognitive decline refers to diminished or impaired mental and/or intellectual functioning. Contracting skeletal muscle is a major source of neurotrophic factors, including brain-derived neurotrophic factor, which regulate synapses in the brain. Furthermore, skeletal muscle activity has important immune and redox effects that modify brain function and reduce muscle catabolism. The identification of common risk factors and underlying mechanisms for sarcopenia and cognition may allow the development of targeted interventions that slow or reverse sarcopenia and also certain forms of cognitive decline. However, the links between cognition and skeletal muscle have not been elucidated fully. This review provides a critical appraisal of the literature on the relationship between skeletal muscle health and cognition. The literature suggests that sarcopenia and cognitive decline share pathophysiological pathways. Ageing plays a role in both skeletal muscle deterioration and cognitive decline. Furthermore, lifestyle risk factors, such as physical inactivity, poor diet and smoking, are common to both disorders, so their potential role in the muscle-brain relationship warrants investigation.
Keywords: cognitive decline; cognitive function; cognitive impairment; dementia; inflammation; lifestyle risk factors; oxidative stress; sarcopenia; skeletal muscle health; vitamin D.