We report the measurement of the Kerr nonlinear refractive index of the rubidium vapor via the high sensitivity z-scan method by using an optical frequency comb. The novel self-focusing and self-defocusing effects of the vapor are presented with red and blue detunings of the laser frequency. The optical nonlinear characteristics of the rubidium vapor are clearly interpreted under different experimental parameters. Furthermore, the Kerr nonlinear refractive index n2 is obtained from the measured dispersion curve, and it basically occurs on the order of 10-6 cm2/W. The evolutions of the Kerr nonlinear coefficient n2 with the laser power and frequency detuning, respectively, are studied. To the best of our knowledge, the use of pulsed lasers to measure the Kerr nonlinear refractive index n2 of atomic vapor has not been reported yet. The direct measurement of the Kerr nonlinear coefficient will greatly help us understand and optimize nonlinear optical processes and find its more potential applications in quantum optics.