Abstract
To examine the differential mechanobiological responses of specific resident tendon cells, we developed an in vivo model of whole-body irradiation followed by injection of either tendon stem/progenitor cells (TSCs) expressing green fluorescent protein (GFP-TSCs) or mature tenocytes expressing GFP (GFP-TNCs) into the patellar tendons of wild type C57 mice. Injected mice were subjected to short term (3 weeks) treadmill running, specifically moderate treadmill running (MTR) and intensive treadmill running (ITR). In MTR mice, both GFP-TSC and GFP-TNC injected tendons maintained normal cell morphology with elevated expression of tendon related markers collagen I and tenomodulin. In ITR mice injected with GFP-TNCs, cells also maintained an elongated shape similar to the shape found in normal/untreated control mice, as well as elevated expression of tendon related markers. However, ITR mice injected with GFP-TSCs showed abnormal changes, such as cell morphology transitioning to a round shape, elevated chondrogenic differentiation, and increased gene expression of non-tenocyte related genes LPL, Runx-2, and SOX-9. Increased gene expression data was supported by immunostaining showing elevated expression of SOX-9, Runx-2, and PPARγ. This study provides evidence that while MTR maintains tendon homeostasis by promoting the differentiation of TSCs into TNCs, ITR causes the onset of tendinopathy development by inducing non-tenocyte differentiation of TSCs, which may eventually lead to the formation of non-tendinous tissues in tendon tissue after long term mechanical overloading conditions on the tendon.
Publication types
-
Research Support, N.I.H., Extramural
MeSH terms
-
Animals
-
Biomarkers / metabolism
-
Cell Differentiation
-
Cell Shape
-
Cell Tracking
-
Chondrocytes / cytology*
-
Chondrocytes / metabolism
-
Collagen Type I / genetics
-
Collagen Type I / metabolism
-
Core Binding Factor Alpha 1 Subunit / genetics
-
Core Binding Factor Alpha 1 Subunit / metabolism
-
Exercise Test
-
Female
-
Gene Expression Regulation
-
Genes, Reporter
-
Green Fluorescent Proteins / genetics
-
Green Fluorescent Proteins / metabolism
-
Lipoprotein Lipase / genetics
-
Lipoprotein Lipase / metabolism
-
Membrane Proteins / genetics
-
Membrane Proteins / metabolism
-
Mice
-
Mice, Inbred C57BL
-
PPAR gamma / genetics
-
PPAR gamma / metabolism
-
Physical Conditioning, Animal / adverse effects
-
Running
-
SOX9 Transcription Factor / genetics
-
SOX9 Transcription Factor / metabolism
-
Stem Cells / cytology*
-
Stem Cells / metabolism
-
Tendinopathy / etiology
-
Tendinopathy / genetics
-
Tendinopathy / metabolism
-
Tendinopathy / pathology*
-
Tendons / metabolism
-
Tendons / pathology*
-
Tenocytes / cytology*
-
Tenocytes / metabolism
Substances
-
Biomarkers
-
Collagen Type I
-
Core Binding Factor Alpha 1 Subunit
-
Membrane Proteins
-
PPAR gamma
-
Pparg protein, mouse
-
Runx2 protein, mouse
-
SOX9 Transcription Factor
-
Sox9 protein, mouse
-
Tnmd protein, mouse
-
Green Fluorescent Proteins
-
Lipoprotein Lipase
Grants and funding
All the external funding sources of support received during this study was from the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH under awards AR065949 and AR070340 (JHW). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. There was no additional external funding received for this study.