Biotech nanocellulose (bacterial nanocellulose, BNC) is a high potential natural polymer. Moreover, it is the only cellulose type that can be produced biotechnologically using microorganisms resulting in hydrogels with high purity, high mechanical strength and an interconnecting micropore system. Recently, the subject of intensive research is to influence this biosynthesis to create function-determining properties. This review reports on the progress in product design and today's state of technical and medical applications. A novel, dynamic, template-based technology, called Mobile Matrix Reservoir Technology (MMR Tech), is highlighted. Thereby, shape, dimensions, surface properties, and nanonetwork structures can be designed in a process-controlled manner. The formed multilayer materials open up new applications in medicine and technology. Especially medical materials for cardiovascular and visceral surgery, and drug delivery systems are developed. The effective production of layer-structured composites and coatings are important for potential applications in the electronics, paper, food and packaging technologies.
Keywords: Bacterial nanocellulose; Biotechnological design; Composites; Drug delivery; Medical implants; Multilayered hydrogels.
Copyright © 2020 Elsevier Ltd. All rights reserved.