Artificial intelligence (AI) algorithms have been shown to diagnose skin lesions with impressive accuracy in experimental settings. The majority of the literature to date has compared AI and dermatologists as opponents in skin cancer diagnosis. However, in the real-world clinical setting, the clinician will work in collaboration with AI. Existing evidence regarding the integration of such AI diagnostic tools into clinical practice is limited. Human factors, such as cognitive style, personality, experience, preferences, and attitudes may influence clinicians' use of AI. In this review, we consider these human factors and the potential cognitive errors, biases, and unintended consequences that could arise when using an AI skin cancer diagnostic tool in the real world. Integrating this knowledge in the design and implementation of AI technology will assist in ensuring that the end product can be used effectively. Dermatologist leadership in the development of these tools will further improve their clinical relevance and safety.