The major histocompatibility complex (MHC) encodes cell surface glycoproteins that function in self-nonself recognition and in allograft rejection. Among primates, the MHC has been well defined only in the human; in the chimpanzee and in two species of macaque monkeys the MHC is less well characterized. Serologic, biochemical and genetic evidence indicates that the basic organization of the MHC linkage group has been phylogenetically conserved. However, the number of genes and their linear relationship on the chromosomes differ between species. Class I MHC loci encode molecules that are the most polymorphic genes known. These molecules are ubiquitous in their tissue distribution and typically are recognized together with nominal antigens by cytotoxic lymphocytes. Class II MHC loci constitute a smaller family of serotypes serving as restricting elements for regulatory T lymphocytes. The distribution of class II antigens is limited mainly to cell types serving immune functions, and their expression is subject to up and down modulation. Class III loci code for components C2, C4 and Factor B (Bf) of the complement system. Interspecies differences in the extent of polymorphism occur, but the significance of this finding in relation to fitness and natural selection is unclear. Detailed information on the structure and regulation of MHC gene expression will be required to understand fully the biologic role of the MHC and the evolutionary relationships between species. Meanwhile, MHC testing has numerous applications to biomedical research, especially in preclinical tissue and organ transplantation studies, the study of disease mechanisms, parentage determination and breeding colony management. In this review, the current status of MHC definition in nonhuman primates will be summarized. Special emphasis is placed on the CyLA system of M. fascicularis which is a major focus in our laboratory. A highly polymorphic cynomolgus MHC has been partially characterized and consists of at least 14 A locus, 11 B locus, 7 C locus class I allelic specificities, 9 Ia-like class II antigens and 6 Bf (class III) variants.