Poly(glycerol sebacate) (PGS) is a versatile biodegradable biomaterial on account of its adjustable mechanical properties as an elastomeric polyester. Nevertheless, it has shown dissimilar results when synthesised by different research groups under equivalent synthesis conditions. This lack of reproducibility proves how crucial it is to understand the effect of the parameters involved on its manufacturing and characterize the polymer networks obtained. Several studies have been conducted in recent years to understand the role of temperature, time, and the molar ratio of its monomers, while the influence of the atmosphere applied during its pre-polymerisation remained unknown. The results obtained here allow for a better understanding about the effect of inert (Ar and N2) and oxidative (oxygen, dry air, and humid air) atmospheres on the extent of the reaction. The molecular pattern of intermediate pre-polymers and the gelation time and morphology of their corresponding cured PGS networks were studied as well. Overall, inert atmospheres promote a rather linear growth of macromers, with scarce branches, resulting in loose elastomers with long chains mainly crosslinked. Conversely, oxygen in the latter atmospheres promotes branching through secondary hydroxyl groups, leading to less-crosslinked 'defective' networks. In this way, the pre-polymerisation atmosphere could be used advantageously to adjust the reactivity of secondary hydroxyls, in order to modulate branching in the elastomeric PGS networks obtained to suit the properties required in a particular application.
Keywords: Curing; Glycerol; Poly(glycerol sebacate); Polycondensation; Polymerisation atmosphere; Pre-polymerisation.
Copyright © 2020 Elsevier B.V. All rights reserved.