Single Cell Detection of the p53 Protein by Mass Cytometry

Cancers (Basel). 2020 Dec 9;12(12):3699. doi: 10.3390/cancers12123699.

Abstract

Purpose: The p53 protein and its post-translational modifications are distinctly expressed in various normal cell types and malignant cells and are usually detected by immunohistochemistry and flow cytometry in contemporary diagnostics. Here, we describe an approach for simultaneous multiparameter detection of p53, its post-translational modifications and p53 pathway-related signaling proteins in single cells using mass cytometry.

Method: We conjugated p53-specific antibodies to metal tags for detection by mass cytometry, allowing the detection of proteins and their post-translational modifications in single cells. We provide an overview of the antibody validation process using relevant biological controls, including cell lines treated in vitro with a stimulus (irradiation) known to induce changes in the expression level of p53. Finally, we present the potential of the method through investigation of primary samples from leukemia patients with distinct TP53 mutational status.

Results: The p53 protein can be detected in cell lines and in primary samples by mass cytometry. By combining antibodies for p53-related signaling proteins with a surface marker panel, we show that mass cytometry can be used to decipher the single cell p53 signaling pathway in heterogeneous patient samples.

Conclusion: Single cell profiling by mass cytometry allows the investigation of the p53 functionality through examination of relevant downstream signaling proteins in normal and malignant cells. Our work illustrates a novel approach for single cell profiling of p53.

Keywords: antibodies; mass cytometry; p53.