Glioma stem cells (GSCs), as a subpopulation of stem cell-like cells, have been proposed to play a crucial role in the progression of drug-resistance in glioblastoma (GBM). Therefore, the targeted eradication of GSCs can serve as a promising therapeutic strategy for the reversal of drug-resistance in GBM. Herein, the effects of silencing c-Myc and m-TOR on primary GBM cells extracted from patients were investigated. Results confirmed that dual inhibition treatment significantly (p < 0.05) and synergistically suppressed GSCs, and consequently reversed TMZ-resistance when compared with the single treatment group. Subsequently, to facilitate effective crossing of the BBB, a biological camouflaged cascade brain-targeting nanosystem (PMRT) was created. The PMRT significantly inhibited tumor growth and extended the lifespan of orthotopic transplantation TMZ-resistant GBM-grafted mice. Our data demonstrated that PMRT could precisely facilitate drug release at the tumor site across the BBB. Simultaneously, c-Myc and m-TOR could serve as synergistic targets to eradicate the GSCs and reverse GBM resistance to TMZ.
Keywords: Biological camouflaged nanosystem; Cascade brain-targeting; Glioma stem cells; Inhibition of mTOR and c-Myc; Synergistic therapy.
Copyright © 2020 Elsevier Ltd. All rights reserved.