Serological screening of sexual assault evidence has traditionally focused on enzyme activity and immunochromatographic assays that provide only a presumptive indication of seminal fluid and have limited sensitivity relative to DNA testing. Seminal fluid detection based on protein mass spectrometry represents a "Next Gen" serological technology that overcomes the specificity and sensitivity limitations of traditional serological screening but requires time-consuming sample preparation protocols. This paper describes a novel "peptidomics" approach to seminal fluid detection that eliminates the need for lengthy trypsin digestion. This streamlines sample preparation to a one-step process followed by high-resolution mass spectrometry to identify naturally occurring seminal fluid peptides and low-molecular weight proteins. Multiple protein biomarkers of seminal fluid were consistently and confidently identified based on the multiplexed detection of numerous endogenous peptides. These included Semenogelin I and II (90% and 86% sequence coverage, respectively); Prostate Specific Antigen/p30 (29% sequence coverage); and Prostatic Acid Phosphatase (24% sequence coverage). The performance of this streamlined peptidomics approach to seminal fluid identification in a forensic context was also assessed using simulated casework samples of the type typically collected as part of a sexual assault examination (e.g., oral and vaginal swabs stained with semen). The resulting data demonstrate that sub-microliter quantities of seminal fluid on cotton swabs can be recovered and reliably detected. This supports the forensic applicability of a peptidomic assay for seminal fluid identification with same-day sample preparation and analysis. Future development and streamlined multiplex peptidomic assays for additional biological stains can easily be envisaged.
Keywords: mass spectrometry; peptidomics; proteomics; seminal fluid; serology; sexual assault.
© 2020 American Academy of Forensic Sciences.