Optimal realizations of quantum technology tasks lead to the necessity of a detailed analytical study of the behavior of a d-level quantum system (qudit) under a time-dependent Hamiltonian. In the present article, we introduce a new general formalism describing the unitary evolution of a qudit ( d ≥ 2 ) in terms of the Bloch-like vector space and specify how, in a general case, this formalism is related to finding time-dependent parameters in the exponential representation of the evolution operator under an arbitrary time-dependent Hamiltonian. Applying this new general formalism to a qubit case ( d = 2 ) , we specify the unitary evolution of a qubit via the evolution of a unit vector in R 4 , and this allows us to derive the precise analytical expression of the qubit unitary evolution operator for a wide class of nonstationary Hamiltonians. This new analytical expression includes the qubit solutions known in the literature only as particular cases.
Keywords: Bloch-like vector space; analytical solutions; exponential representation; nonstationary Hamiltonian; unitary evolution of a qudit.