Tongue cancer treatment often results in impaired speech, swallowing, or mastication. Simulating the effect of treatments can help the patient and the treating physician to understand the effects and impact of the intervention. To simulate deformations of the tongue, identifying accurate mechanical properties of tissue is essential. However, not many succeeded in characterizing in-vivo tongue stiffness. Those who did, measured the tongue At Rest (AR), in which muscle tone subsides even if muscles are not willingly activated. We expected to find an absolute rest state in participants 'under General Anesthesia' (GA). We elaborated on previous work by measuring the mechanical behavior of the in-vivo tongue under aspiration using an improved volume-based method. Using this technique, 5 to 7 measurements were performed on 10 participants both AR and under GA. The obtained Pressure-Shape curves were first analyzed using the initial slope and its variations. Hereafter, an inverse Finite Element Analysis (FEA) was applied to identify the mechanical parameters using the Yeoh, Gent, and Ogden hyperelastic models. The measurements AR provided a mean Young's Modulus of 1638 Pa (min 1035 - max 2019) using the Yeoh constitutive model, which is in line with previous ex-vivo measurements. However, while hoping to find a rest state under GA, the tongue unexpectedly appeared to be approximately 2 to 2.5 times stiffer under GA than AR. Explanations for this were sought by examining drugs administered during GA, blood flow, perfusion, and upper airway reflexes, but neither of these explanations could be confirmed.
Keywords: Aspiration device; General anesthesia; Tissue parameters; Tongue cancer; Tongue stiffness.
Copyright © 2020 The Authors. Published by Elsevier Ltd.. All rights reserved.