Nanostructured Cobalt-Based Electrocatalysts for CO2 Reduction: Recent Progress, Challenges, and Perspectives

Small. 2020 Dec;16(52):e2004158. doi: 10.1002/smll.202004158. Epub 2020 Dec 1.

Abstract

CO2 reduction reaction (CO2 RR) provides a promising strategy for sustainable carbon fixation by converting CO2 into value-added fuels and chemicals. In recent years, considerable efforts are focused on the development of transition-metal (TM)-based catalysts for the selectively electrochemical CO2 reduction reaction (ECO2 RR). Co-based catalysts emerge as one of the most promising electrocatalysts with high Faradaic efficiency, current density, and low overpotential, exhibiting excellent catalytic performance toward ECO2 RR for CO and HCOOH productions that are economically viable. The intrinsic contribution of Co and the synergistic effects in Co-hybrid catalysts play essential roles for future commercial productions by ECO2 RR. This review summarizes the rational design of Co-based catalysts for ECO2 RR, including molecular, single-metal-site, and oxide-derived catalysts, along with the nanostructure engineering techniques to highlight the distribution of the ECO2 RR products by Co-based catalysts. The density functional theory (DFT) simulations and advanced in situ characterizations contribute to interpreting the synergies between Co and other materials for the enhanced product selectivity and catalytic activity. Challenges and outlook concerning the catalyst design and reaction mechanism, including the upgrading of reaction systems of Co-based catalysts for ECO2 RR, are also discussed.

Keywords: CO2 reduction; catalysts; cobalt; electrocatalysis.

Publication types

  • Review