Endoplasmic Reticulum Calcium Homeostasis in Kidney Disease: Pathogenesis and Therapeutic Targets

Am J Pathol. 2021 Feb;191(2):256-265. doi: 10.1016/j.ajpath.2020.11.006. Epub 2020 Nov 24.

Abstract

Calcium (Ca2+) homeostasis is a crucial determinant of cellular function and survival. Endoplasmic reticulum (ER) acts as the largest intracellular Ca2+ store that maintains Ca2+ homeostasis through the ER Ca2+ uptake pump, sarco/ER Ca2+ ATPase, ER Ca2+ release channels, inositol 1,4,5-trisphosphate receptor channel, ryanodine receptor, and Ca2+-binding proteins inside of the ER lumen. Alterations in ER homeostasis trigger ER Ca2+ depletion and ER stress, which have been associated with the development of a variety of diseases. In addition, recent studies have highlighted the role of ER Ca2+ imbalance caused by dysfunction of sarco/ER Ca2+ ATPase, ryanodine receptor, and inositol 1,4,5-trisphosphate receptor channel in various kidney diseases. Despite progress in the understanding of the importance of these ER Ca2+ channels, pumps, and binding proteins in the pathogenesis of kidney disease, treatment is still lacking. This mini-review is focused on: i) Ca2+ homeostasis in the ER, ii) ER Ca2+ dyshomeostasis and apoptosis, and iii) altered ER Ca2+ homeostasis in kidney disease, including podocytopathy, diabetic nephropathy, albuminuria, autosomal dominant polycystic kidney disease, and ischemia/reperfusion-induced acute kidney injury.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Calcium / metabolism*
  • Endoplasmic Reticulum / metabolism*
  • Endoplasmic Reticulum Stress / physiology*
  • Homeostasis / physiology*
  • Humans
  • Kidney Diseases / metabolism*

Substances

  • Calcium