Background and objectives: Chronic pulmonic regurgitation (PR) following repair of congenital heart disease (CHD) impairs right ventricular function that impacts peak exercise cardiac index (pCI). We aimed to estimate in a non-invasive way pCI and peak oxygen consumption (pVO2) and to evaluate predictors of low pCI in patients with significant residual pulmonic regurgitation after CHD repair.
Method: We included 82 patients (median age 19 years (range 10-54 years)) with residual pulmonic regurgitation fraction >40%. All underwent cardiac MRI and cardiopulmonary testing with measurement of pCI by thoracic impedancemetry. Low pCI was defined <7 L/min/m2.
Results: Low pCI was found in 18/82 patients. Peak indexed stroke volume (pSVi) tended to compensate chronotropic insufficiency only in patients with normal pCI (r=-0.31, p=0.01). Below 20 years of age, only 5/45 patients had low pCI but near-normal (≥6.5 L/min/m2). pVO2 (mL/kg/min) was correlated with pCI (r=0.58, p=0.0002) only in patients aged >20 years. Left ventricular stroke volume in MRI correlated with pSVi only in the group of patients with low pCI (r=0.54, p=0.02). No MRI measurements predicted low pCI. In multivariable analysis, only age predicted a low pCI (OR=1.082, 95% CI 1.035 to 1.131, p=0.001) with continuous increase of risk with age.
Conclusions: In patients with severe PR, pVO2 is a partial reflection of pCI. Risk of low pCI increases with age. No resting MRI measurement predicts low haemodynamic response to exercise. Probably more suitable to detect ventricular dysfunction, pCI measurement could be an additional parameter to take into account when considering pulmonic valve replacement.
Keywords: congenital heart disease; congenital heart disease surgery; pulmonic valve disease.
© Author(s) (or their employer(s)) 2021. No commercial re-use. See rights and permissions. Published by BMJ.