Bacterial modular type I polyketide synthases (PKSs) are complex multidomain assembly line proteins that produce a range of pharmaceutically relevant molecules with a high degree of stereochemical control. Due to their colinear properties, they have been considerable targets for rational biosynthetic pathway engineering. Among the domains harbored within these complex assembly lines, ketoreductase (KR) domains have been extensively studied with the goal of altering their stereoselectivity by site-directed mutagenesis, as they confer much of the stereochemical complexity present in pharmaceutically active reduced polyketide scaffolds. Here we review all efforts to date to perform site-directed mutagenesis on PKS KRs, most of which have been done in the context of excised KR domains on model diffusible substrates such as β-keto N-acetyl cysteamine thioesters. We also discuss the challenges around translating the findings of these studies to alter stereocontrol in the context of a complex multidomain enzymatic assembly line.
Keywords: biocatalysis; mutagenesis; oxidoreductase; polyketide synthase; stereoselection.
© 2020 Wiley-VCH GmbH.