Background: Keshan disease is an endemic cardiomyopathy of undefined causes. Being involved in the unclear pathogenesis of Keshan disease, a clear diagnosis, and effective treatment cannot be initiated. However, the rapid development of gut flora in cardiovascular disease combined with omics and big data platforms may promote the discovery of new diagnostic markers and provide new therapeutic options. This study aims to identify biomarkers for the early diagnosis and further explore new therapeutic targets for Keshan disease.
Methods: This cohort study consists of two parts. Though the first part includes 300 participants, however, recruiting will be continued for the eligible participants. After rigorous screening, the blood samples, stools, electrocardiograms, and ultrasonic cardiogram data would be collected from participants to elucidate the relationship between gut flora and host. The second part includes a prospective follow-up study for every 6 months within 2 years. Finally, deep mining of big data and rapid machine learning will be employed to analyze the baseline data, experimental data, and clinical data to seek out the new biomarkers to predict the pathogenesis of Keshan disease.
Discussion: Our study will clarify the distribution of gut flora in patients with Keshan disease and the abundance and population changes of gut flora in different stages of the disease. Through the big data platform analyze the relationship between environmental factors, clinical factors, and gut flora, the main factors affecting the occurrence of Keshan disease were identified, and the changed molecular pathways of gut flora were predicted. Finally, the specific gut flora and molecular pathways affecting Keshan disease were identified by metagenomics combined with metabonomic analysis.
Trial registration: ChiCTR1900026639. Registered on 16 October 2019.
Keywords: Cohort study; Gut flora; Keshan disease; Metabonomic analysis; The big data platform.