Promoted crystallisation and cationic ordering in thermoelectric Cu26V2Sn6S32 colusite by eccentric vibratory ball milling

Dalton Trans. 2020 Nov 17;49(44):15828-15836. doi: 10.1039/d0dt03368e.

Abstract

A pristine colusite Cu26V2Sn6S32 was successfully synthesised on a 100 g scale via a mechanochemical reaction in an industrial eccentric vibratory ball mill followed by spark plasma sintering (SPS) at 873 K. The milling of elemental precursors from 1 up to 12 hours was performed and the prepared samples were investigated in detail by X-ray powder diffraction, Mössbauer spectroscopy, scanning electron microscopy, and thermoelectric property measurements. The results point to the formation of a high purity and high crystallinity non-exsoluted colusite phase after the SPS process (P4[combining macron]3n, a = 10.7614(1) Å) in the case of a 12 h milled sample. In comparison, samples milled for 1-6 h displayed small quantities of binary Cu-S phases and vanadium core-shell inclusions, leading to a V-poor/Sn-rich colusite with a higher degree of structural disorder. These samples exhibit lower electrical conductivity and Seebeck coefficient while an increase in the total thermal conductivity is observed. This phenomenon is explained by a higher reactivity and grain size reduction upon prolonged milling and by a weak evolution of the chemical composition from a partly disordered V-poor/Sn-rich colusite phase to a well-ordered stoichiometric Cu26V2Sn6S32 colusite, which leads to a decrease in carrier concentration. For all samples, the calculated PF values, around 0.7-0.8 mW m-1 K-2 at 700 K, are comparable to the values previously achieved for mechanochemically synthesised Cu26V2Sn6S32 in laboratory mills. This approach thus serves as an example of scaling-up possibility for sulphur-based TE materials and supports their future large-scale deployment.