Pathology of the thymus after allogeneic bone marrow transplantation in man. A histologic immunohistochemical study of 36 patients

Am J Pathol. 1987 Nov;129(2):242-56.

Abstract

A major hypothesis to explain the immunodeficiency associated with bone marrow transplantation states that thymic epithelial damage due to graft-versus-host disease (GVHD) abrogates or delays the recovery of normal immunologic function. This study evaluated the thymus glands of 36 human bone marrow transplant recipients dying between 4 and 1742 days after transplant using histology, histochemistry, and immunohistology. The observations lead to a model of thymic damage by irradiation, chemotherapy, and GVHD in which early injury by all three of these agents results in profound thymic atrophy followed by long-delayed restitution. Patients undergoing total body irradiation showed more severe damage to thymic cortical and medullary epithelium than did patients undergoing chemotherapy alone as preparation for transplantation. Patients with GVHD showed additional damage in the form of individual thymic epithelial cell death and showed HLA-DR surface protein expression on thymic epithelium during GVHD. Longer-term survivors showed a profoundly delayed restitution of normal thymic epithelium and delayed evidence of restored lymphopoiesis. A few patients dying late after transplant showed evidence of reconstitution of normal thymic structure or nodules of lymphopoiesis in focal areas of epithelial-cell reconstitution. Evidence of such lymphopoiesis was seen at times ranging between 90 and 1742 days after grafting. The data are consistent with a model of long-standing thymic damage caused by GVHD which is reversible after the development of tolerance.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adolescent
  • Adult
  • Anemia, Aplastic / therapy
  • Bone Marrow Transplantation*
  • Child
  • Child, Preschool
  • Female
  • Graft vs Host Disease
  • Graft vs Host Reaction
  • Humans
  • Leukemia / therapy
  • Male
  • Thymus Gland / immunology
  • Thymus Gland / pathology*
  • Transplantation, Homologous / adverse effects