Background: Weight-loss programmes often achieve short-term success though subsequent weight regain is common. The ability to identify predictive factors of regain early in the weight maintenance phase is crucial.
Objective: To investigate the associations between short-term weight variability and long-term weight outcomes in individuals engaged in a weight-loss maintenance intervention.
Methods: The study was a secondary analysis from The NoHoW trial, an 18-month weight maintenance intervention in individuals who recently lost ≥5% body weight. Eligible participants (n = 715, 64% women, BMI = 29.2 (SD 5.0) kg/m2, age = 45.8 (SD 11.5) years) provided body-weight data by smart scale (Fitbit Aria 2) over 18 months. Variability in body weight was calculated by linear and non-linear methods over the first 6, 9 and 12 weeks. These estimates were used to predict percentage weight change at 6, 12, and 18 months using both crude and adjusted multiple linear regression models.
Results: Greater non-linear weight variability over the first 6, 9 and 12 weeks was associated with increased subsequent weight in all comparisons; as was greater linear weight variability measured over 12 weeks (up to AdjR2 = 4.7%). Following adjustment, 6-week weight variability did not predict weight change in any model, though greater 9-week weight variability by non-linear methods was associated with increased body-weight change at 12 (∆AdjR2 = 1.2%) and 18 months (∆AdjR2 = 1.3%) and by linear methods at 18 months (∆AdjR2 = 1.1%). Greater non-linear weight variability measured over 12 weeks was associated with increased weight at 12 (∆AdjR2 = 1.4%) and 18 (∆AdjR2 = 2.2%) months; and 12-week linear variability was associated with increased weight at 12 (∆AdjR2 = 2.1%) and 18 (∆AdjR2 = 3.6%) months.
Conclusion: Body-weight variability over the first 9 and 12 weeks of a weight-loss maintenance intervention weakly predicted increased weight at 12 and 18 months. These results suggest a potentially important role in continuously measuring body weight and estimating weight variability.