Swim bladders in sciaenid fishes function in hearing in some and sound production in almost all species. Sciaenid swim bladders vary from simple carrot-shaped to two-chambered to possessing various diverticula. Diverticula that terminate close to the ears improve hearing. Other unusual diverticula heading in a caudal direction have not been studied. The fresh-water Asian species Boesemania microlepis has an unusual swim bladder with a slightly restricted anterior region and 6 long-slender caudally-directed diverticula bilaterally. We hypothesized that these diverticula modify sound spectra. Evening advertisement calls consist of a series of multicycle tonal pulses, but the fundamental frequency and first several harmonics are missing or attenuated, and peak frequencies are high, varying between < 1-2 kHz. The fundamental frequency is reflected in the pulse repetition rate and in ripples on the frequency spectrum but not in the number of cycles within a pulse. We suggest that diverticula function as Helmholz absorbers turning the swim bladder into a high-pass filter responsible for the absence of low frequencies typically present in sciaenid calls. Further, we hypothesize that the multicycle pulses are driven by the stretched aponeuroses (flat tendons that connect the sonic muscles to the swim bladder) in this and other sciaenids.