Psychroflexus aurantiacus sp. nov., isolated from soil in the Yellow River Delta wetlands

Int J Syst Evol Microbiol. 2020 Dec;70(12):6284-6293. doi: 10.1099/ijsem.0.004527.

Abstract

A Gram-stain-negative, strictly aerobic, non-motile, orange-coloured bacterium, designated YR1-1T, was isolated from a soil sample collected from the Yellow River Delta wetlands (PR China). Growth was observed at a salinity of 1.0-15.0 % NaCl, 4-45 °C and pH 6.0-9.0. The results of phylogenetic analysis based on the 16S rRNA gene sequences indicated that YR1-1T represented a member of the genus Psychroflexus, with the highest sequence similarity to Psychroflexus sediminis YIM-C238T (97.9 %), followed by Psychroflexus aestuariivivens (97.1 %) and Psychroflexus torquis (96.4 %). The average nucleotide identity and digital DNA-DNA hybridization values between YR1-1T and other closely related type strains of species of the genus Psychroflexus were 68.7-86.3% and 17.8-30.9 %. The genome of the strain was 2 899 374 bp in length with 39.8 % DNA G+C content. The predominant fatty acids (>10 %) were iso-C15 : 0 and anteiso-C15 : 0. The major respiratory quinone was menaquinone-6 (MK-6) and the major polar lipids were phosphatidylethanolamine, phospholipid, diphosphatidylglycerol, two unidentified aminolipids and four unidentified lipids. The combined genotypic and phenotypic data indicate that YR1-1T represents a novel species within the genus Psychroflexus, for which the name Psychroflexus aurantiacus sp. nov., is proposed. The type strain is YR1-1T (=KCTC 72794T=CGMCC 1.17458T).

Keywords: Polyphasic taxonomy; Psychroflexus; Psychroflexus aurantiacus; novel species.

MeSH terms

  • Bacterial Typing Techniques
  • Base Composition
  • China
  • DNA, Bacterial / genetics
  • Fatty Acids / chemistry
  • Flavobacteriaceae / classification*
  • Flavobacteriaceae / isolation & purification
  • Nucleic Acid Hybridization
  • Phospholipids / chemistry
  • Phylogeny*
  • Pigmentation
  • RNA, Ribosomal, 16S / genetics
  • Rivers
  • Sequence Analysis, DNA
  • Soil Microbiology*
  • Vitamin K 2 / analogs & derivatives
  • Vitamin K 2 / chemistry
  • Wetlands*

Substances

  • DNA, Bacterial
  • Fatty Acids
  • Phospholipids
  • RNA, Ribosomal, 16S
  • Vitamin K 2
  • menaquinone 6