Non-uniform thermal load causes performance degradation of crystal X-ray optics. With the development of high-brightness X-ray free-electron lasers, the thermal load on X-ray optics becomes even more severe. To mitigate the thermal load, a quantitative understanding of thermal effects on the optical performance is necessary. We derived an analytical model for monochromator performance under a non-uniform thermal load. This analytical model quantitatively describes the distortion of the rocking curve and attributes different contributions to different factors of thermal load. It provides not only monochromator design insights and considerations, but also a quick estimation of the rocking curve distortion due to thermal load for practical situations such as pump-probe experiments.