Invasive optical pumping for room-temperature masers, time-resolved EPR, triplet-DNP, and quantum engines exploiting strong coupling

Opt Express. 2020 Sep 28;28(20):29691-29702. doi: 10.1364/OE.401294.

Abstract

We explore an approach for optically pumping a body of optically dense magnetic material. This challenge arises in time-resolved electron paramagnetic resonance (TREPR), triplet-based dynamic nuclear polarisation (DNP), and cavity QED. Crystals of pentacene-doped p-terphenyl were grown around variously shaped ends of optical waveguides, through which pump light could be injected deeply into the crystal. When incorporated into a maser as the gain medium, we found that, compared to conventional side-pumping, 11 times less pump beam intensity was needed to reach the masing threshold and 54 times more pulse energy could be absorbed by the gain medium without damage, resulting in a record peak output power of -5 dBm.