Locking nonequilibrium shapes of liquids into targeted architectures by interfacial jamming of nanoparticles is an emerging area in material science. 5,10,15,20-tetrakis(4-sulfonatophenyl) porphyrin (H6 TPPS) shows three different aggregation states that present an absorption imaging platform to monitor the assembly and jamming of supramolecular polymer surfactants (SPSs) at the liquid/liquid interface. The interfacial interconversion of H6 TPPS, specifically H4 TPPS2- dissolved in water, from J- to an H-aggregation was induced by strong electrostatic interactions with amine-terminated polystyrene dissolved in toluene at the water/toluene interface. This resulted in color-tunable liquids due to interfacial jamming of the SPSs formed between H4 TPPS2- and amine-terminated polystyrene. However, the formed SPSs cannot lock in nonequilibrium shapes of liquids. In addition, a self-wrinkling behavior was observed when amphiphilic triblock copolymers of PS-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) were used to interact with H4 TPPS2- . Subsequently, the SPSs formed can lock in nonequilibrium shapes of liquids.
Keywords: interfacial assembly; interfacial interconversion; multicolor; porphyrin; structure liquid.
© 2020 Wiley-VCH GmbH.