Photosynthetic O2 evolution is catalyzed by the Mn4CaO5 cluster of the water oxidation complex of the photosystem II (PSII) complex. The photooxidative self-assembly of the Mn4CaO5 cluster, termed photoactivation, utilizes the same highly oxidizing species that drive the water oxidation in order to drive the incorporation of Mn2+ into the high-valence Mn4CaO5 cluster. This multistep process proceeds with low quantum efficiency, involves a molecular rearrangement between light-activated steps, and is prone to photoinactivation and misassembly. A sensitive polarographic technique was used to track the assembly process under flash illumination as a function of the constituent Mn2+ and Ca2+ ions in genetically engineered membranes of the cyanobacterium Synechocystis sp. PCC6803 to elucidate the action of Ca2+ and peripheral proteins. We show that the protein scaffolding organizing this process is allosterically modulated by the assembly protein Psb27, which together with Ca2+ stabilizes the intermediates of photoactivation, a feature especially evident at long intervals between photoactivating flashes. The results indicate three critical metal-binding sites: two Mn and one Ca, with occupation of the Ca site by Ca2+ critical for the suppression of photoinactivation. The long-observed competition between Mn2+ and Ca2+ occurs at the second Mn site, and its occupation by competing Ca2+ slows the rearrangement. The relatively low overall quantum efficiency of photoactivation is explained by the requirement of correct occupancy of these metal-binding sites coupled to a slow restructuring of the protein ligation environment, which are jointly necessary for the photooxidative trapping of the first stable assembly intermediate.
Keywords: conformational fluctuation; metalloprotein assembly; oxygen evolution; photosystem II; water oxidation.
Copyright © 2020 the Author(s). Published by PNAS.