Ruminal Degradation of Rumen-Protected Glucose Influences the Ruminal Microbiota and Metabolites in Early-Lactation Dairy Cows

Appl Environ Microbiol. 2021 Jan 4;87(2):e01908-20. doi: 10.1128/AEM.01908-20. Print 2021 Jan 4.

Abstract

Rumen-protected glucose (RPG) plays an important role in alleviating the negative energy balance of dairy cows. This study used a combination of rumen microbes 16S and metabolomics to elucidate the changes of rumen microbial composition and rumen metabolites of different doses of RPG's rumen degradation part in early-lactation dairy cows. Twenty-four multiparous Holstein cows in early lactation were randomly allocated to control (CON), low-RPG (LRPG), medium-RPG (MRPG), or high-RPG (HRPG) groups in a randomized block design. The cows were fed a basal total mixed ration diet with 0, 200, 350, and 500 g of RPG per cow per day, respectively. Rumen fluid samples were analyzed using Illumina MiSeq sequencing and ultrahigh-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. MRPG supplementation increased bacterial richness and diversity, including increasing the relative abundance of cellulolytic bacteria, such as Ruminococcus, Lachnospiraceae_NK3A20_group, Ruminiclostridium, and Lachnospiraceae_UCG-008 MRPG significantly increased the concentrations of acetate, propionate, butyrate, and total volatile fatty acid in the rumen. Ruminal fluid metabolomics analysis showed that RPG supplementation could significantly regulate the synthesis of amino acids digested by protozoa in the rumen. Correlation analysis of the ruminal microbiome and metabolome revealed some potential relationships between major bacterial abundance and metabolite concentrations. Our analysis found that RPG supplementation of different doses can change the diversity of microorganisms in the rumen and affect the rumen fermentation pattern and microbial metabolism and that a daily supplement of 350 g of RPG might be the ideal dose.IMPORTANCE Dairy cows in early lactation are prone to a negative energy balance because their dry matter intake cannot meet the energy requirements of lactation. Rumen-protected glucose is used as an effective feed additive to alleviate the negative energy balance of dairy cows in early lactation. However, one thing that is overlooked is that people often think that rumen-protected glucose is not degraded in the rumen, thus ignoring its impact on the microorganisms in the rumen environment. Our investigation and previous experiments have found that rumen-protected glucose is partially degraded in the rumen. However, there are few reports on this subject. Therefore, we conducted research on this problem and found that rumen-protected glucose supplementation at 350 g/day can promote the development and metabolism of rumen flora. This provides a theoretical basis for the extensive application of rumen bypass glucose at a later stage.

Keywords: 16S rRNA; early lactation; metabolomics; microbiota; negative energy balance; rumen-protected glucose.

Publication types

  • Randomized Controlled Trial, Veterinary
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animal Feed
  • Animals
  • Bacteria / classification
  • Bacteria / genetics
  • Cattle
  • Diet / veterinary
  • Dietary Supplements*
  • Female
  • Fermentation
  • Glucose / pharmacology*
  • Lactation / drug effects*
  • Lactation / metabolism
  • Metabolomics
  • Microbiota / drug effects*
  • Microbiota / genetics
  • RNA, Ribosomal, 16S
  • Rumen / drug effects*
  • Rumen / metabolism
  • Rumen / microbiology

Substances

  • RNA, Ribosomal, 16S
  • Glucose