Understanding the performance of a bisphosphonate Ru water oxidation catalyst

Dalton Trans. 2020 Oct 20;49(40):14052-14060. doi: 10.1039/d0dt02253e.

Abstract

Water oxidation catalysts (WOCs) create electrons that allow generating H2 from water and sunlight, a promising process for the production of clean energy. The mechanism of water oxidation mediated by Ru(2,2'-bipyridine-6,6'-diphosphonato)(4-picoline)2 has been studied computationally to comprehend the results obtained in the experiments performed by the Concepcion and Grotjahn groups. Our study was performed at pH = 8 and 1. At pH = 8, the phosphonates are fully deprotonated and the catalysis, which is shown to be more energetically costly than that of the dicarboxylato Ru catalyst counterpart, takes place through a mechanism that involves a bimolecular interaction between two metal-oxo units (I2M). At pH = 1, only one of the phosphonates of the catalyst can deprotonate. After testing all possible pathways and comparing with experimental data, we conclude that the catalysis proceeds neither through a water nucleophilic attack nor via I2M, but rather we hypothesize that the rate-determining step involves both the catalyst and the ceric ammonium nitrate.