Evaluation of a convolutional neural network for ovarian tumor differentiation based on magnetic resonance imaging

Eur Radiol. 2021 Jul;31(7):4960-4971. doi: 10.1007/s00330-020-07266-x. Epub 2020 Oct 14.

Abstract

Objectives: There currently lacks a noninvasive and accurate method to distinguish benign and malignant ovarian lesion prior to treatment. This study developed a deep learning algorithm that distinguishes benign from malignant ovarian lesion by applying a convolutional neural network on routine MR imaging.

Methods: Five hundred forty-five lesions (379 benign and 166 malignant) from 451 patients from a single institution were divided into training, validation, and testing set in a 7:2:1 ratio. Model performance was compared with four junior and three senior radiologists on the test set.

Results: Compared with junior radiologists averaged, the final ensemble model combining MR imaging and clinical variables had a higher test accuracy (0.87 vs 0.64, p < 0.001) and specificity (0.92 vs 0.64, p < 0.001) with comparable sensitivity (0.75 vs 0.63, p = 0.407). Against the senior radiologists averaged, the final ensemble model also had a higher test accuracy (0.87 vs 0.74, p = 0.033) and specificity (0.92 vs 0.70, p < 0.001) with comparable sensitivity (0.75 vs 0.83, p = 0.557). Assisted by the model's probabilities, the junior radiologists achieved a higher average test accuracy (0.77 vs 0.64, Δ = 0.13, p < 0.001) and specificity (0.81 vs 0.64, Δ = 0.17, p < 0.001) with unchanged sensitivity (0.69 vs 0.63, Δ = 0.06, p = 0.302). With the AI probabilities, the junior radiologists had higher specificity (0.81 vs 0.70, Δ = 0.11, p = 0.005) but similar accuracy (0.77 vs 0.74, Δ = 0.03, p = 0.409) and sensitivity (0.69 vs 0.83, Δ = -0.146, p = 0.097) when compared with the senior radiologists.

Conclusions: These results demonstrate that artificial intelligence based on deep learning can assist radiologists in assessing the nature of ovarian lesions and improve their performance.

Key points: • Artificial Intelligence based on deep learning can assess the nature of ovarian lesions on routine MRI with higher accuracy and specificity than radiologists. • Assisted by the deep learning model's probabilities, junior radiologists achieved better performance that matched those of senior radiologists.

Keywords: Deep learning; Magnetic resonance imaging; Ovarian neoplasms.

MeSH terms

  • Artificial Intelligence
  • Deep Learning*
  • Female
  • Humans
  • Magnetic Resonance Imaging
  • Neural Networks, Computer
  • Ovarian Cysts*
  • Ovarian Neoplasms* / diagnostic imaging
  • Sensitivity and Specificity