Therapies for treatment of type 2 diabetes (T2D) involve a variety of medications, depending on the stage of T2D progression. It is now an accepted knowledge that in silico trials can help to accelerate drug development and support treatment optimization. A T2D simulator (T2DS), consisting of a model of the glucose-insulin system and an in silico population describing glucose-insulin dynamics in T2D subjects, has been recently developed based on early-stage T2D data, studied with sophisticated experimental techniques. This limits the domain of validity of the simulator to this specific sub-population of T2D. Here we proposed a method for tuning the T2DS to any desired T2D target population, e.g. insulin-naïve (i.e., not experienced with insulin) patients, without the need to resort to complex and expensive clinical studies. This will allow to use the T2DS for testing treatments in the target population. To illustrate the methodology, we used a case study: extending the T2DS to reproduce the behavior of insulin-naïve T2D subjects. The methodology described here can be extended to other stages of T2D, allowing an extensive in silico testing phase of different treatments before human trials.