Protective Effect of Cilostazol Against Restraint Stress Induced Heart Failure in Post-Myocardial Infarction Rat Model

Chonnam Med J. 2020 Sep;56(3):180-185. doi: 10.4068/cmj.2020.56.3.180. Epub 2020 Sep 24.

Abstract

Cilostazol, a phosphodiesterase III inhibitor, has antiplatelet and vasodilatory effects. It also has pleiotrophic effects including reduction of oxygen free radicals, positive chronotropic effect and inhibition of intracellular Ca2+ associated catecholamine secretion. The study was aimed to examine, in vivo, the effects of cilostazol treatments on myocardial function, myocardial remodeling, and neurohormonal status in myocardial infarction (MI) with restrained stress rat model. Male Sprague Dawley rats, subjected to coronary artery ligation to induce myocardial infarction (MI), received either a standard rat chow alone (control, n=5) or combined with cilostazol (cilostazol, n=5; 5 mg/kg×5 weeks). They were exposed to repeated restraint stress (2 h×2 times/day) for 10 days beginning 1 week after surgery. Left ventricular ejection fraction (LVEF), LV mass by heart weight/body weight ratio and level of tissue brain natriuretic peptide (BNP) expression by immunoblotting were determined. Plasma epinephrine and norepinephrine levels were also measured. Mean LVEF was higher in the cilostazol group than in the control group (66.9±14.3 vs 47.0±17.1, p<0.05) at 5 weeks after MI. However, LV mass and tissue BNP expression were significantly lower in the cilostazol than in the control group (p<0.05). Plasma epinephrine and norepinephrine levels were also lower in the cilostazol group compared with the control (p<0.05). Cilostazol preserves left ventricular systolic function and attenuates stress induced remodeling in postinfarct rats. Its beneficial effects were associated with reduced plasma catecholamine levels during postinfarct remodeling.

Keywords: Cilostazol; Myocardial Infarction; Ventricular Remodeling.