Dendrobe (Dendrobium spp.) is a traditional medicinal and edible food, which is rich in nutrients and contains biologically active metabolites. The quality and price of dendrobe are related to its geographical origins, and high quality dendrobe is often imitated by low quality dendrobe in the market. In this work, near-infrared (NIR) spectroscopy sensor combined with porphyrin and chemometrics was used to distinguish 360 dendrobe samples from twelve different geographical origins. Partial least squares discriminant analysis (PLSDA) was used to study the sensing performance of traditional NIR and tera-(4-methoxyphenyl)-porphyrin (TMPP)-NIR on the identification of dendrobe origin. In the PLSDA model, the recognition rate of the training and prediction set of the TMPP-NIR could reach 100%, which was higher than the 91.85% and 91.34% of traditional NIR. And the accuracy, sensitivity, and specificity of the TMPP-NIR sensor are all 1.00. The mechanism of TMPP improving the specificity of NIR spectroscopy should be related to the π-π conjugated system and the methoxy groups of TMPP interact with the chemical components of dendrobe. This study reflected that NIR spectrum with TMPP sensor was an effective approach for identifying the geographic origin of dendrobe.
Copyright © 2020 Chaogeng Lv et al.