Chemical transformation in cellular environment is critical for regulating biological processes and metabolic pathways. Harnessing biocatalytic cascades to produce chemicals of interest has become a research focus to benefit industrial and pharmaceutic areas. Nanoreactors, which can act as artificial cell-like devices to organize cascade reactions, have been recently proposed for potential therapeutic applications for life-threatening illnesses. Among various types of nanomaterials, there is a growing interest in 2D metal-organic frameworks (MOFs). By virtue of the ultralarge specific surface area, high porosity, and structural diversity, 2D MOF nanosheets hold great promise for a broad spectrum of biomedical use. Herein, a unique planar MOF-based hybrid architecture (GMOF-LA) is introduced by incorporating ultrasmall gold nanoparticles (Au NPs) as nanozyme and l-Arginine (l-Arg) as nitric oxide (NO) donor. The prepared Au NPs enable oxidation of glucose into hydrogen peroxide, which drives biocatalytic cascades to covert l-Arg into NO. Interestingly, the well-designed nanosheets not only possess excellent catalytical activity for NO generation, resulting in gas therapeutic effect, but also serve as a desired photosensitizer for photodynamic therapy. This study establishes a good example of exploring bioinspired nanoreactors for cooperative anticancer effect, which may pave the path for future "bench-to-bedside" design of nanomedicine.
Keywords: cascade reactions; gas therapy; metal-organic framework nanosheets; nanozymes; photodynamic therapy.
© 2020 Wiley-VCH GmbH.