1-Ally-3-methylimidazolium chloride ([Amim]Cl), dimethyl sulfoxide (DMSO), and CaCl2 were selected to construct dissolution systems to produce value-added products from pretreatment of waste corrugated cardboards (P-WCCs). The dissolution behaviors of P-WCCs before and after ball milling were studied in different dissolution systems. The regenerated cellulose films were quickly and efficiently prepared via dissolving, regenerating, and pressurized drying. When 4 wt % waste corrugated cardboard was dissolved in [Amim]Cl for 4 h at 90 °C, the regenerated cellulose films featured tensile strengths as high as 59.00 MPa. Adding 40% DMSO and 2 wt % CaCl2 increased the tensile strength of the film to a maximum value of 85.86 MPa. This demonstrates that DMSO improves the ability of WCC to dissolve in ionic liquids; Ca2+ improves the tensile strength and thermal stability of the regenerated cellulose film but reduces its transparency. This work provides a new, simple, and highly efficient way to use WCCs for packaging and wrapping.
Copyright © 2020 American Chemical Society.