Design of a self-powered triboelectric face mask

Nano Energy. 2021 Jan:79:105387. doi: 10.1016/j.nanoen.2020.105387. Epub 2020 Sep 20.

Abstract

Usage of a face mask has become mandatory in many countries after the outbreak of SARS-CoV-2, and its usefulness in combating the pandemic is a proven fact. There have been many advancements in the design of a face mask and the present treatise describes a face mask in which a simple triboelectric nanogenerator (TENG) with an electrocution layer may serve the purpose of filtration and deactivation of SARS-CoV-2. The proposed mask is designed with multilayer filters, in which the inner three layers act as a triboelectric (TE) filter and the outer one as an electrocution layer (EL). The viral particles experience a mildshock in EL due to the electric field produced between the electrocution layers by contact electrification. Four pairs of triboelectric series fabrics, i.e. polyvinylchloride (PVC)-nylon, polypropylene (PP)-polyurethane (PU), latex rubber-PU, polyimide (PI)-nylon are studied to establish the efficacy of the mask. The motional force exerted on triboelectric filter materials can produce sufficient electric power to activate EL. The proposed mask can be used by a wide range of people because of its triboelectric self-powering (harvesting mechanical energy from daily activities, e.g. breathing, talking or other facial movements) functionalities to ensure effective filtration efficiency. More importantly, it is expected to be potentially beneficial to slow down the devastating impact of COVID-19.

Keywords: COVID-19; Contact electrification; Electrocutionlayer; Face mask; Self-powered mask; TENG.