Cholesterol is an essential constituent of the cell membrane that modulates several physiological events, including virus entry into the host. Duck virus enteritis (DVE) is a contagious and lethal infection that attacks several species of waterfowl. Anatid herpesvirus 1 (AnHV-1) is the causative agent of duck viral enteritis and classified under subfamily Alphaherpesvirinae. In this study, the effect of cholesterol depletion in both host cell membrane and viral envelope on the infectivity of AnHV-1 was explored. Cholesterol depletion of chicken embryo fibroblast cells (DF-1) by methyl-β-cyclodextrin (MβCD) inhibited the infectivity of AnHV-1. This inhibitory effect was moderately reversed by the exogenous replenishment of cholesterol in the cells. Furthermore, the inhibition of endogenous cholesterol synthesis by a statin drug also inhibited the infectivity of AnHV-1. Presumably, the removal of cholesterol from AnHV-1 envelope might be disrupting the viral envelope resulting in its diminished infectivity. The presence of a relatively hydrophobic cavity in MβCD can be used to extract cholesterol from the cell membrane. Loss of infectivity of the virus might be due to the effects of MβCD mediated cholesterol depletion from the cell membrane. The results implicate that the cell membrane cholesterol is vital for the infectivity of AnHV-1 in DF-1 cells, and its depletion from virion curtails the infectivity by destabilizing the envelope.
Keywords: Cholesterol; Duck; Gene expression; Infectivity; MβCD.
Copyright © 2020 Elsevier B.V. All rights reserved.