The Intricate Coupling Between STIM Proteins and Orai Channels

Curr Opin Physiol. 2020 Oct:17:106-114. doi: 10.1016/j.cophys.2020.07.018. Epub 2020 Jul 31.

Abstract

Store-operated Ca2+ entry signals are critical for cellular regulation. This intricate signaling pathway involves coupling of proteins in two different membranes: the ER-resident Ca2+-sensing STIM proteins and the highly Ca2+-selective PM Orai channels. The molecular nature of the STIM-Orai coupling interface in ER-PM junctions and consequent Orai channel gating, are processes under intense study. We describe recent developments in determining the mechanism of Orai activation through the key STIM-Orai Activating Region (SOAR) of STIM1. We describe the unexpected unimolecular coupling of STIM with Orai and explain the observed variable stoichiometry of STIM-Orai interactions. We also define the discrete C-terminal regions in Orai channels that initially latch onto STIM proteins and mediate allosteric activation of the channel. A critical "nexus" region closely associated with the STIM-activated C-terminus of Orai1, propagates the STIM-binding signal through the four tightly-associated transmembrane helices of Orai1, finally to modify the pore-forming helices and effect channel opening.