The early diagnosis of blast-induced traumatic brain injury (bTBI) is of great clinical significance for prognostication and treatment. Here, we report a new strategy for early bTBI diagnosis through serum and cerebrospinal fluid (CSF) based on terahertz time-domain spectroscopy (THz-TDS). The spectral differences of serum and CSF for different degrees of experimental bTBI in rats have been demonstrated in the early period. In addition, the THz spectra of total protein in the hypothalamus and hippocampus were investigated at different time points after blast exposure, which both showed clear differences with time increasing compared with that in the normal brain. This might help to explain the neurological symptoms caused by bTBI. Moreover, based on the THz absorption spectra of serum and CSF, the principal component analysis and machine learning algorithms were performed to automatically identify the degree of bTBI. The highest diagnostic accuracy was up to 95.5%. It is suggested that this method has potential as an alternative method for high-sensitive, rapid, label-free, economical and early diagnosis of bTBI.
© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.